REFLEXION
Factor Común por agrupación de términos
En el factor común por agrupación de términos se deben reunir grupos de igual número de términos, por tanto para aplicar este caso el número de términos debe ser par(de 4 términos en adelante). Si se pueden reunir grupos de igual número de términos, se le saca el factor común a cada grupo. Si queda la misma expresión polinómica en cada uno de los grupos entre paréntesis, se realiza una segunda factorización donde el factor común será, en este caso, el paréntesis, formalmente hablando, la expresión polinómica que se encuentra dentro del paréntesis, quedando así al final un producto de dos factores.
Ejemplo 1: Factorizar
Primero, debes verificar que no halla factor común para todos los términos en 2x2y + 2xz2 +y2z2 +xy3, en este problema no hay factor común en todos los términos. Recomiendo siempre realizar esta verificación, por que en caso que haya un factor común para todos los términos debes primero sacar este factor común. Ahora estos con los pasos para resolver el problema:
Paso Nº 1: Se agrupan los términos convenientemente usando paréntesis. En este caso el polinomio posee 4 términos, debemos reunir 2 grupos de 2 términos cada uno. Cada grupo que reúnas debe tener factores comunes, mi recomendación es que el primer grupo sea el que posea mayor cantidad de factores comunes. En el problema podemos agrupar los dos primeros términos y los dos últimos términos, cada grupo tiene su máximo común divisor (MCD).
Paso Nº 2: Se saca factor común de cada grupo. En el primer grupo » 2x2y + 2xz2 « el MCD es 2x, en el segundo grupo » y2z2 +xy3 » el MCD es y2 .
Paso Nº 3: Como queda la misma expresión en cada grupo, se saca como factor común al paréntesis (xy + z2 ).
Ya que el polinomio se expresa como un producto de dos binomios, está en forma factorizada. Podemos comprobar nuestro trabajo aplicando la propiedad distributiva para desarrollar los paréntesis y comparando el resultado con el polinomio original.
Comprobación:
Como el resultado es el mismo que el polinomio original, por lo tanto nuestra factorización es correcta.
Ejemplo 2: Factorizar
Paso Nº 1: Se agrupan los términos convenientemente usando paréntesis. En este caso el polinomio posee 4 términos, debemos reunir 2 grupos de 2 términos cada uno. En el problema podemos agrupar el primer término con el tercer término por que tienen el común el factor 3a y el segundo término con el cuarto término,cada grupo tiene su máximo común divisor (MCD).
Paso Nº 2: Se saca factor común de cada grupo. En el primer grupo «3a2 +3ax» el MCD es 3a, en el segundo grupo «-7b2x-7ab2« el MCD es -7b2.
Recuerda que x+a=a+x por la propiedad conmutativa.
Paso Nº 3: Como queda la misma expresión en cada grupo, se saca como factor común al paréntesis(a+x ).
Comprobación:
Comentarios
Publicar un comentario